DIFFRAC: a discriminative and flexible framework for clustering

نویسندگان

  • Francis R. Bach
  • Zaïd Harchaoui
چکیده

We present a novel linear clustering framework (DIFFRAC) which relies on a linear discriminative cost function and a convex relaxation of a combinatorial optimization problem. The large convex optimization problem is solved through a sequence of lower dimensional singular value decompositions. This framework has several attractive properties: (1) although apparently similar to K-means, it exhibits superior clustering performance than K-means, in particular in terms of robustness to noise. (2) It can be readily extended to non linear clustering if the discriminative cost function is based on positive definite kernels, and can then be seen as an alternative to spectral clustering. (3) Prior information on the partition is easily incorporated, leading to state-of-the-art performance for semi-supervised learning, for clustering or classification. We present empirical evaluations of our algorithms on synthetic and real medium-scale datasets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spectral and Semidefinite Relaxation of the CLUHSIC Algorithm

CLUHSIC is a recent clustering framework that unifies the geometric, spectral and statistical views of clustering. In this paper, we show that the recently proposed discriminative view of clustering, which includes the DIFFRAC and DisKmeans algorithms, can also be unified under the CLUHSIC framework. Moreover, CLUHSIC involves integer programming and one has to resort to heuristics such as iter...

متن کامل

Estimation of Seigniorage Laffer curve in IRAN: A Fuzzy C-Means Clustering Framework

There are two sources for governments to raise their revenues. The first is the direct taxation levied on output, and the second is seigniorage. Seigniorage is also known as printing new money and is defined as the value of real resources acquired by the government through its power of sovereignty on its monopoly of printing money. The purpose of this paper is to examine the Laffer curve for Se...

متن کامل

Choosing the Best Hierarchical Clustering Technique Based on Principal Components Analysis for Suspended Sediment Load Estimation

1- INTRODUCTION The assessment of watershed sediment load is necessary for controling soil erosion and reducing the potential of sediment production. Different estimates of sediment amounts along with the lack of long-term measurements limits the accessibility to reliable data series of erosion rate and sediment yield. Therefore, the observed data of suspended sediment load could be used to ...

متن کامل

Minimum Conditional Entropy Clustering: A Discriminative Framework for Clustering

In this paper, we introduce an assumption which makes it possible to extend the learning ability of discriminative model to unsupervised setting. We propose an informationtheoretic framework as an implementation of the low-density separation assumption. The proposed framework provides a unified perspective of Maximum Margin Clustering (MMC), Discriminative k -means, Spectral Clustering and Unsu...

متن کامل

Discriminative Bayesian Nonparametric Clustering

We propose a general framework for discriminative Bayesian nonparametric clustering to promote the inter-discrimination among the learned clusters in a fully Bayesian nonparametric (BNP) manner. Our method combines existing BNP clustering and discriminative models by enforcing latent cluster indices to be consistent with the predicted labels resulted from probabilistic discriminative model. Thi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007